Basics of Study Design

Basics of Study Design

- Bias and variability
- Randomization: why and how?
- Blinding: why and how?
- General study designs

Bias and Variability

- The clinical trial is considered to be the "gold standard" in clinical research
- Clinical trials provide the ability to reduce bias and variability that can obscure the true effects of treatment
- Bias \Rightarrow affects accuracy
- Variability \Rightarrow affects precision

- Bias: any influence which acts to make the observed results non-representative of the true effect of therapy
- Examples:
 - healthier patients given treatment A, sicker patients given treatment B
 - treatment A is "new and exciting" so both the physician and the patient expect better results on A
- Many potential sources of bias

- Variability: high variability makes it more difficult to discern treatment differences
- Some sources of variability
 - Measurement
 - instrument
 - observer
 - Biologic

within individuals

between individuals

 Can not always control for all sources (and may not want to)

Fundamental principle in comparing treatment groups:

- Groups must be alike in all important aspects and only differ in the treatment each group receives
- In practical terms, "comparable treatment groups" means "alike on the average"

Why is this important?

 If there is a group imbalance for an important factor then an observed treatment difference may be due to the imbalance rather than the effect of treatment

Example:

- Drug X versus placebo for osteoporosis
- Age is a risk factor for osteoporosis
- Older subjects are enrolled in Drug X group
- Treatment group comparison will be biased due to imbalance on age

How can we ensure comparability of treatment groups?

- We can not ensure comparability but *randomization* helps to balance all factors between treatment groups
- If randomization "works" then groups will be similar in all aspects except for the treatment received

Randomization

- Allocation of treatments to participants is carried out using a chance mechanism so that neither the patient nor the physician know in advance which therapy will be assigned
- Simplest Case: each patient has the same chance of receiving any of the treatments under study

Simple Randomization

 Think of tossing a coin each time a subject is eligible to be randomized

HEADS: Treatment A

TAILS: Treatment B

- Approximately ½ will be assigned to treatments A and B
- Randomization usually done using a randomization schedule or a computerized random number generator

Problem with Simple Randomization:

- May result in substantial imbalance in either – an important baseline factor and/or
 - the number of subjects assigned to each group
- Solution: Use blocking and/or stratified randomization

Blocking Example:

- If we have two treatment groups (A and B) equal allocation, and a block size of 4, random assignments would be chosen from the blocks
 - 1) AABB 4) BABA
 - 2) ABAB 5) BAAB
 - 3) ABBA 6) BABA
- Blocking ensures balance after every 4th assignment

Stratification Example

- To ensure balance on an important baseline factor, create strata and set up separate randomization schedules within each stratum
- Example: if we want prevent an imbalance on age in an osteoporosis study, first create the strata "< 75 years" and "≥ 75 years" then randomize within each stratum separately
- Blocking should be also be used within each stratum

Alternatives to Randomization

- Randomization is not always possible due to ethical or practical considerations
- Some alternatives:
 - Historical controls
 - Non-randomized concurrent controls
 - Different treatment per physician
 - Systematic alternation of treatments
- Sources of bias for these alternatives need to be considered

Blinding

- Masking the identity of the assigned interventions
- Main goal: avoid potential bias caused by conscious or subconscious factors
- *Single blind*: patient is blinded
- Double blind: patient and assessing investigator are blinded
- Triple blind:

committee monitoring response variables (e.g. statistician) is also blinded

How to Blind

• To "blind" patients, can use a placebo

Examples

- pill of same size, color, shape as treatment
- sham operation (anesthesia and incision) for angina relief
- sham device such as sham acupuncture

Why Should Patients be Blinded?

- Patients who know they are receiving a new or experimental intervention may report more (or less) side effects
- Patients not on new or experimental treatment may be more (or less) likely to drop out of the study
- Patient may have preconceived notions about the benefits of therapy
- Patients try to get well/please physicians

 <u>Placebo effect</u> – response to medical intervention which results from the intervention itself, not from the specific mechanism of action of the intervention

Example: Fisher R.W. JAMA 1968; 203: 418-419

- 46 patients with chronic severe itching randomly given one of four treatments
- High itching score = more itching

Treatment	Itching Score
cyproheptadine HCI	27.6
trimeprazine tartrate	34.6
placebo	30.4
nothing	49.6

Why Should Investigators be Blinded?

• Treating physicians and outcome assessing investigators are often the same people

 \Rightarrow Possibility of unconscious bias in assessing outcome is difficult to rule out

 Decisions about concomitant/compensatory treatment are often made by someone who knows the treatment assignment

 \Rightarrow "Compensatory" treatment may be given more often to patients on the protocol arm perceived to be less effective

Can Blinding Always be Done?

- In some studies it may be impossible (or unethical) to blind
 - a treatment may have characteristic side effects
 - it may be difficult to blind the physician in a surgery or device study
- Sources of bias in an un-blinded study must be considered

- Many clinical trial study designs fall into the categories of *parallel group*, *dose-ranging*, *cross-over* and *factorial* designs
- There are many other possible designs and variations on these designs
- We will consider the general cases

• Parallel group designs

Dose-Ranging Studies

• Cross-Over Designs

• Factorial Designs

Cross-Over Designs

- Subjects are randomized to sequences of treatments (A then B or B then A)
- Uses the patient as his/her own control
- Often a "wash-out" period (time between treatment periods) is used to avoid a "carry over" effect (the effect of treatment in the first period affecting outcomes in the second period)
- Can have a cross-over design with more than 2 periods

Cross-Over Designs

- Advantage: treatment comparison is only subject to within-subject variability not between-subject variability
 ⇒ reduced sample sizes
- Disadvantages:
 - strict assumption about carry-over effects
 - inappropriate for certain acute diseases (where a condition may be cured during the first period)
 - drop outs before second period

Cross-Over Designs

- Appropriate for conditions that are expected to return to baseline levels at the beginning of the second period
 - Examples:
 - Treatment of chronic pain
 - Comparison of hearing aids for hearing loss
 - Mouth wash treatment for gingivitis

Factorial Designs

- Attempts to evaluate two interventions compared to a control in a single experiment (simplest case)
- An important concept for these designs is *interaction* (sometimes called *effect modification*)

Interaction: The effect of treatment A differs depending upon the presence or absence of intervention B and vice-versa.

Factorial Designs

- Advantages:
 - If no interaction, can perform two experiments with less patients than performing two separate experiments
 - Can examine interactions if this is of interest
- Disadvantages:
 - Added complexity
 - potential for adverse effects due to "polypharmacy"

Factorial Designs

- *Example:* Physician's Health Study
- Physicians randomized to: aspirin (to prevent cardiovascular disease) beta-carotene (to prevent cancer) aspirin and beta-carotene neither (placebo)

Stampfer, Buring, Willett, Rosner, Eberlein and Hennekens (1985) The 2x2 factorial design: it's application to a randomized trial of aspirin and carotene in U.S. physicians. *Stat. in Med.* 9:111-116.