

Measurement bias

• Definition of Bias:

<u>Systematic difference</u> between <u>observed result</u> and the <u>truth</u>

Measurement bias

- Systematic error arising from inaccurate measurements (or classification) of subjects or study variables. (Last)
- Occurs when individual measurements or classifications of disease or exposure are inaccurate (i.e. they do not measure correctly what they are supposed to measure). (Beaglehole)
- If patients in one group stand a better chance of having their outcomes detected than those in another group. (Fletcher)

Measurement bias:

Example: analysis of Hb by different methods (cyanmethemoglobin and Sahli's) in cases and controls.

Example: biochemical analysis of the two groups from two different laboratories, which give consistently different results

 Exposure misclassification occurs when exposed subjects are incorrectly classified as unexposed, or vice versa

- <u>Disease misclassification</u> occurs when diseased subjects are incorrectly classified as non-diseased, or vice versa
 - (Norell)

Causes of Misclassification

- **1.** Measurement gap: gap between the measured and the true value of a variable
- Observer / interviewer bias
- Recall bias
- Reporting bias
- 2. Gap b/w the theoretical and empirical definition of exposure / disease

Example... 'gap b/w definitions'

Theoretical definition

- Exposure: passive smoking – inhalation of tobacco smoke from other people's smoking
- <u>Disease</u>: Myocardial infarction – necrosis of the heart muscle tissue

Empirical definition

- Exposure: passive smoking – time spent with smokers (having smokers as room-mates)
- <u>Disease</u>: Myocardial infarction – certain diagnostic criteria (chest pain, enzyme levels, signs on ECG)

- Differential misclassification Errors in measurement are one way only
 - Example: Measurement bias instrumentation may be inaccurate, such as using only one size blood pressure cuff to take measurements on both adults and children

True Classification

	Cases	Controls	Total
Exposed	100	50	150
Nonexposed	50	50	100
	150	100	250

OR = ad/bc = 2.0; RR = a/(a+b)/c/(c+d) = 1.3

Differential misclassification - Overestimate exposure for 10 cases, inflate rates

	Cases	Controls	Total
Exposed	110	50	160
Nonexposed	40	50	90
-	150	100	250
	X		

OR = ad/bc = 2.8; RR = a/(a+b)/c/(c+d) = 1.6

True Classification

	Cases	Controls	Total
Exposed	100	50	150
Nonexposed	50	50	100
	150	100	250

OR = ad/bc = 2.0; RR = a/(a+b)/c/(c+d) = 1.3

Differential misclassification - Underestimate exposure for 10 cases, deflate rates

	Cases	Controls	Total
Exposed	90	50	140
Nonexposed	60	50	110
	150	100	250

OR = ad/bc = 1.5; RR = a/(a+b)/c/(c+d) = 1.2

True Classification

	Cases	Controls	Total
Exposed	100	50	150
Nonexposed	50	50	100
	150	100	250

OR = ad/bc = 2.0; RR = a/(a+b)/c/(c+d) = 1.3

Differential misclassification - Underestimate exposure for 10 controls, inflate rates

	Cases	Controls	Total
Exposed	100	40	140
Nonexposed	50	60	110
	150	100	250

OR = ad/bc = 3.0; RR = a/(a+b)/c/(c+d) = 1.6

True Classification

	Cases	Controls	Total
Exposed	100	50	150
Nonexposed	50	50	100
	150	100	250

OR = ad/bc = 2.0; RR = a/(a+b)/c/(c+d) = 1.3

Differential misclassification - Overestimate exposure for 10 controls, deflate rates

	Cases	Controls	Total
Exposed	100	60	160
Nonexposed	50	40	90
	150	100	250

OR = ad/bc = 1.3; RR = a/(a+b)/c/(c+d) = 1.1

Exposure misclassification – Non-differential

- Misclassification does not differ between cases and non-cases
- Generally leads to dilution of effect, i.e. bias towards RR=1 (no association

- Nondifferential (random) misclassification errors in assignment of group happens in more than one direction
 - This will dilute the study findings
 - BIAS TOWARD THE NULL

True Classification

	Cases	Controls	Total
Exposed	100	50	150
Nonexposed	50	50	100
	150	100	250

OR = ad/bc = 2.0; RR = a/(a+b)/c/(c+d) = 1.3

Nondifferential misclassification - Overestimate exposure in 10 cases, 10 controls – bias towards null

	Cases	Controls	Total
Exposed	110	60	170
Nonexposed	40	40	80
	150	100	250
OR = ad/bc = 1.8; $RR = a/(a+b)/c/(c+d) = 1.3$			

Implications of Differential exposure misclassification

- An improvement in accuracy of exposure information (i.e. no misclassification among those who had breast cancer), actually reduced accuracy of results
- <u>Non-differential misclassification is</u> <u>'better' than differential misclassification</u>
- So, epidemiologists are more concerned with <u>comparability of information</u> than with improving accuracy of information

 <u>Recall Bias</u>: Systematic error due to differences in accuracy or completeness of recall to memory of past events or experience.

Example: patients suffering from MI are more likely to recall and report 'lack of exercise' in the past than controls Example: Mothers of children with birth defects are likely to remember drugs they took during pregnancy differently than mothers of normal children.

Underreporting the past exposure: mothers of infants who died from SIDS may be inclined to under report their use of alcohol or recreational drugs during pregnancy.

Recall bias can also occur in retrospective cohort studies.
How? Example?

Example, those who have been exposed to a potentially harmful agent in the past may remember their subsequent outcomes with a different degree of completeness or accuracy. Example: In the retrospective portion of the Ranch Hand Study which looked at effects of exposure to Agent Orange (dioxin). Pilots who had been exposed may have had a greater tendency to remember skin rashes that occurred during the year following exposure.

Differential exposure misclassification

Pitfall:

In a case-control study, if both cases and controls have more or less <u>equal difficulty</u> in remembering past exposures accurately, it is nondifferential, and it is a form of nondifferential misclassification.

Differential exposure misclassification

Ways to Reduce Recall Bias

- Use a control group that has a different disease (that is unrelated to the disease under study).
- Use questionnaires that are carefully constructed in order to maximize accuracy and completeness. Ask specific questions.
- For socially sensitive questions, such as alcohol and drug use or sexual behaviors, use a self-administered questionnaire instead of an interviewer.
- If possible, assess past exposures from biomarkers or from pre-existing records.

Example: In the retrospective portion of the Ranch Hand Study which looked at effects of exposure to Agent Orange (dioxin). Pilots who had been exposed may have had a greater tendency to remember skin rashes that occurred during the year following exposure.

- Interviewer / observer bias: systematic error due to observer variation (failure of the observer to measure or identify a phenomenon correctly)
- systematic differences in soliciting, recording, or interpreting information on exposure (in a case-control study) or outcome (in retrospective and prospective cohort studies and in intervention studies [clinical trials]).

Differential exposure misclassification

Example: in patients of thromboembolism, look for h/o OCP use more aggressively

Differential exposure misclassification

Ways to Reduce Interviewer Bias

- Use standardized questionnaires consisting of closed-end, easy to understand questions with appropriate response options.
- Train all interviewers to adhere to the question and answer format strictly, with the same degree of questioning for both cases and controls.
- Obtain data or verify data by examining preexisting records (e.g., medical records or employment records) or assessing biomarkers.

Hawthorne effect: effect (usually positive / beneficial) of being under study upon the persons being studied; their knowledge of being studied influences their behavior

Placebo effect: (usually, but not necessarily beneficial) expectation that regimen will have effect, i.e. the effect is due to the power of suggestion.

Control for bias

- Be purposeful in the study design to minimize the chance for bias
 - Example: use more than one control group
- Define, a priori, who is a case or what constitutes exposure so that there is no overlap
 - Define categories within groups clearly (age groups, aggregates of person years)
- Set up strict guidelines for data collection
 - Train observers or interviewers to obtain data in the same fashion
 - It is preferable to use more than one observer or interviewer, but not so many that they cannot be trained in an identical manner

Control for bias, cont,

- Randomly allocate observers/interviewer data collection assignments
- Institute a masking process if appropriate
 - Single masked study subjects are unaware of whether they are in the experimental or control group
 - Double masked study the subject and the observer are unaware of the subject's group allocation
 - Triple masked study the subject, observer and data analyst are unaware of the subject's group allocation

• Build in methods to minimize loss to follow-up

 The degree to which a measurement or test measure what it is supposed to measure

- The degree to which a measurement or test measure what it is supposed to measure
- Content validity
- Criterion validity

Content validity

Have you measured the concept thoroughly?

Criterion validity

How close to the "truth" are you in your measurement?

Validity Content validity

- Example: smoking Need to ask:
- Amount
- Type
- Exposure to passive smoking

Content validity

Other examples where content validity is important:

- SES
- Ethnicity
- Quality of life
- Physical activity

- Criterion validity
- Sensitivity
- Specificity

Criterion validity

 How well does a person's self-reported current smoking status reflect the "truth"?

- Criterion validity
- Sensitivity: 0.80=80%

	Tru		
test	+	-	Total
positive	80	10	90
negative	20	390	410
Total	100	400	500

- Criterion validity
- Specificity: 0.98=98%

	Tru		
test	+	-	Total
positive	80	10	90
negative	20	390	410
Total	100	400	500

Criterion validity

• determination of pregnancy status

	Truth		
Preg test	+	-	Total
positive	95	80	175
negative	5	320	325
Total	100	400	500

Criterion validity

determination of pregnancy status
Sensitivity=0.95

\$\$ Specificity=0.80

	Truth		
Preg test	+	-	Total
positive	95	80	175
negative	5	320	325
Total	100	400	500

Ability of a measure or test to produce the same result when used repeatedly in the same person

Repeatability

	Murmur		
	heard	Not heard	Total
Clinician A	10	90	100
Clinician B	10	90	100
Total	20	180	200

Repeatability

* % agreement: (1+81)/100= 82%

	Clinician A		
Clinician B	heard	Not heard	Total
heard	1	9	10
Not heard	9	81	90
Total	10	90	100

Reliability

***** Have you ever used the OCP?

	First interview		
Second interview	yes	no	Total
yes			256
no			115
Total	252	119	371

Reliability

Have you ever used the OCP?

***** % disagreement : (37+41)/371=21%

	First interview		
Second interview	yes	no	Total
yes	215	41	256
no	37	78	115
Total	252	119	371