Curriculum and Syllabus for the Biochemistry Discipline (Cardiovascular Module)

Credits: 0.43 Theoretical Credits

Session	Syllabus and Curriculum
1	Clinical Enzymology: Causes of Increased and Decreased Serum Activity of
	Intracellular Enzymes, Essential Criteria for the Clinical Application of
	Enzymes, and Clinical Significance of Alkaline Phosphatase and Acid
	Phosphatase
2	Clinical Significance of Enzymes: 5'-Nucleotidase, Gamma-Glutamyl
	Transferase (GGT), Aminotransferases (Transaminases), Lactate
	Dehydrogenase (LDH), Creatine Phosphokinase (CPK/CK), Cholinesterase,
	Aldolase, Amylase, Lipase
3	Lipid and Lipoprotein Metabolism: Digestion and Absorption of Dietary
	Lipids, Chylomicron Metabolism, and Metabolism of VLDL, LDL, and HDL
4	Fatty Acid Biosynthesis Pathway, Beta-Oxidation of Fatty Acids, Cholesterol
	Biosynthesis, Ketone Body Synthesis, and Disorders of Metabolic Pathways

References:

- ✓ Textbook of Biochemistry, Thomas Devlin, Last Edition
- ✓ Harper's Illustrated Biochemistry , Last Edition
- ✓ Clinical Biochemistry, Tietz, Last Edition

Syllabus for the Biochemistry Lab Course (Cardiovascular Module)

Credits: 0.22 Practical Credits

Session	Syllabus and Curriculum
1	Quantification of Hormones by Enzyme-Linked Immunosorbent Assay
	(ELISA)
2	Measurement of Serum Triglycerides or Cholesterol

• Curriculum and Syllabus for the Biochemistry Discipline (Gastrointestinal Module) Credits: 0.43 Theoretical Credits

Session	Syllabus and Curriculum
1	Nucleotide Metabolism: De Novo Purine Biosynthesis Pathway, Purine Salvage
	Pathway, Regulation of Purine Biosynthesis, Purine Catabolism, and Disorders of Purine Metabolism
2	Nucleotide metabolism: De novo pathway of pyrimidine biosynthesis, Salvage pathway of pyrimidine biosynthesis, Regulation of pyrimidine biosynthesis pathway, Pyrimidine catabolism, Diseases of pyrimidine metabolic pathway
3	Metabolism of non-protein nitrogenous compounds: heme biosynthesis, diseases related to heme biosynthesis, porphyria, heme catabolism, diseases of heme catabolism
4	Integration of metabolic pathways: importance of key and regulatory sites in metabolic pathways, importance of different tissues in metabolic pathways, metabolic pathways in the liver, metabolic pathways in adipose tissue, metabolic pathways in muscle tissue, metabolic pathways after eating, metabolic pathways in the fasting state, metabolic pathways after prolonged starvation

References:

- ✓ Textbook of Biochemistry, Thomas Devlin, Last Edition
- ✓ Harper's Illustrated Biochemistry , Last Edition
- ✓ Clinical Biochemistry, Tietz, Last Edition
- Syllabus for the Biochemistry Lab Course (Respiratory System Module)
- Credits: 0.22 Practical Credits

Session	Syllabus and Curriculum
1	Complete Urinalysis (Physical, Chemical, and Dipstick Examination)
2	Complete Urinalysis (microscopic examination)- Serum uric acid measurement

- Curriculum and Syllabus for the Biochemistry Discipline (Respiratory Module)
- Credits: 0.43 Theoretical Credits

Session	Syllabus and Curriculum
1	Introduction to Bioenergetics and Oxidative Phosphorylation: Thermodynamic
	Laws, Free Energy Changes, Reduction Potential, Electron Transport Chain,
	Chemiosmotic Theory, and Inhibitors of the Electron Transport Chain
2	Carbohydrate Metabolism: Digestion and Absorption, Glycolysis Pathway,
	Pyruvate Oxidation, and the Krebs Cycle
3	Gluconeogenesis, Glycogenesis, Glycogenolysis, Fructose Metabolism, and
	Galactose Metabolism
4	Amino Acid Metabolism: Digestion and Absorption, General Reactions of
	Amino Acid Catabolism, the Urea Cycle, Specific Catabolic Pathways for
	Aromatic, Branched-Chain, and Sulfur-Containing Amino Acids, Biosynthesis
	of Non-Essential Amino Acids, and Biosynthesis of Amino Acid-Derived
	Compounds

References:

- ✓ Textbook of Biochemistry, Thomas Devlin, Last Edition
- ✓ Harper's Illustrated Biochemistry , Last Edition
- ✓ Clinical Biochemistry, Tietz, Last Edition
- Syllabus for the Biochemistry Lab Course (Respiratory System Module)
- Credits: 0.22 Practical Credits

Session	Syllabus and Curriculum
1	Measurement of Serum Calcium or Phosphorus
2	Blood Glucose Measurement and its Clinical Significance in Diabetes Mellitus
3	Measurement of Serum Urea (Uremia - Diacetyl Monoxime Method) or Serum
	Creatinine

Syllabus for Molecular and Cellular Biochemistry (Unit 1)

Credits: 0.95 Theoretical Credits

Session	Syllabus and Curriculum
1	Introduction to Biochemistry - Water: Structure, Hydrogen Bonding,
	Henderson-Hasselbalch Equation, and Acids & Bases
2	Buffers: Definition of a Buffer, Major Physiological Buffer Systems, and
	Definition & Clinical Significance of Acidosis and Alkalosis
3	Amino Acids: Structure, Physicochemical Properties, Classification, Essential
	and Non-Essential Amino Acids, and Titration
4	Proteins: Primary, Secondary, Tertiary, and Quaternary Structure - Protein
	Folding and Denaturation - Structure and Function of Myoglobin and
	Hemoglobin - Structure, Function, and Clinical Significance of Collagen
5	Carbohydrates: Definition, Structure, Physicochemical Properties,
	Monosaccharide Derivatives, and Disaccharides
6	Homopolysaccharides, Heteropolysaccharides, Glycoproteins, and Clinical
	Significance
7	Lipids: Structure, Types, and Physicochemical Properties of Fatty Acids; and
	Classes of Lipids (Triacylglycerols, Esterified and Free Cholesterol,
	Phospholipids, Sphingolipids)
8	Lipoproteins: Liposomes, Micelles, and Emulsions; Apolipoproteins; and
	Classes of Lipoproteins and Their Clinical Significance

References:

- ✓ Textbook of Biochemistry, Thomas Devlin, Last Edition
- √ Harper's Illustrated Biochemistry , Last Edition
- ✓ Clinical Biochemistry, Tietz, Last Edition

Syllabus for the Biochemistry Lab Course

Credits: 0.22 Practical Credits

Session	Syllabus and Curriculum
1	Introduction to Laboratory Equipment, Safety, Waste Disposal, and Micropipette
	Operation
2	Qualitative testing of carbohydrates (Benedict-Silvanoff-Barford-Bial-
	Polysaccharides tests)
3	Qualitative testing of amino acids and proteins (xanthoprotei-Millon-
	Hopkinskohl-Biore tests)
4	Chromatography (sugars and serum proteins) - Electrophoresis (sugars and
	serum proteins)

Syllabus for Molecular and Cellular Biochemistry (Unit 2)

Credits: 0.95 Theoretical Credits

Session	Syllabus and Curriculum
1	Enzymes: Definition - Classification - Structure - Nomenclature - Active site -
	Mechanism of action of enzymes - Determination of enzyme activity - Factors
	affecting enzyme function - Michaelis-Menton reaction
2	Enzyme inhibitors - Isoenzymes - Types of ordered and unordered enzyme
	reactions - Regulation of enzyme action and their clinical significance
3	Vitamins: Definition - Classification - Structure - Coenzyme Role - Water-
	soluble Vitamins
4	Fat-soluble vitamins - vitamin deficiency disorders and their clinical
	significance
5	Nucleic acids: Components of nucleic acids (DNA-RNA) - nucleosides -
	nucleotides
6	The structure of DNA and its types - The structure of RNA and its types
7	Replication: The process of prokaryotic replication, repair, and its clinical
	significance
8	Replication: The process of eukaryotic replication, repair, and its clinical
	significance

References:

- ✓ Textbook of Biochemistry, Thomas Devlin, Last Edition
- ✓ Harper's Illustrated Biochemistry , Last Edition
- ✓ Clinical Biochemistry, Tietz, Last Edition

Syllabus for the Biochemistry Lab Course

Credits: 0.22 Practical Credits

Session	Syllabus and Curriculum
1	Enzyme kinetics (temperature-pH-concentration of inhibitors)
2	Spectrophotometer (Beer-Lambert law) - Flame photometer (sodium-potassium
	measurement)
3	Qualitative testing of amino acids and proteins (xanthoprotei-Millon-
	Hopkinskohl-Biore tests)
4	Analysis of Serum Proteins: Classes and Clinical Correlations